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Dense electron beam radiation in a dielectric medium
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We have studied both the spectral intensity and the energy of radiation produced by an electron beam in
dielectric medium. Since the device starts up from a photon vacuum the investigation is based on a quantum
electrodynamics approach. We have assumed that the electron beam longitudinal size is indefinite and its
energy spread is of Gaussian form. In such a case the radiation process has a cutoff with respect to the electron
density py. If the electron density is lower than some characteristic densipythen the radiation will be
mainly spontaneous and its emission line will have Gaussian shape. If the electron beam ipglensg,
then a drastic change of line form takes place. Namely, one observes a high and narrder geglkrradiation
effec) on its right-hand side and radiation energy saturation on its left-hand side. Both of these phenomena are
due to the stimulated processes of photon absorption and emission. We have evaluated the level of radiation
fluctuations in the peak vicinity. Numerical estimations of both obtained effects are presented.
[S1063-651%97)07709-X

PACS numbegs): 41.60.Bq

. INTRODUCTION rectly proportional to the number of electrod®, whereas
the intensity of the radiation is directly proportional to
The theory of the Vavilov-Cherenkov effect based on(N(®)2. This effect in the cases of Cherenkov radiatii
Maxwell equations was developed by Tamm and Frgilk  transition radiation4], and undulator radiatiof6] was re-
As a matter of fact, they calculated the radiation produced byently observed in mm wavelengths region. Note, that it is a
an electron traversing a dielectric medium. They showed thatery complicated problem to generate a very short electron
spectral distribution of Cherenkov radiation hatype form  bunch.

[i.e., spectral intensity | ~ §( w — kv cosd) do dw], so that the (2) In the present paper we consider the opposite tase
frequencyw emitted at thed angle is defined by >\ (or where thee-beam longitudinal size is indefinjte
The major feature of such a device is that a photon, produced
1-ng coss=0. (1) by an electron, moves ie-beam for a long time. As a result,

the possibilities of stimulated emission as well as absorption
Heren(w) is the refractive index of the mediuns=v/c, v appear. We show that both these phenomena lead to drastic
is the electron velocityc is the light velocity,d is the angle  changes of spontaneous radiation line form. It will be noted
between wave vectok and velocityv. The calculations here that the pure stimulated effets fact, stimulated Cher-
based on quantum electrodynami{€ED) lead to a similar  enkov effects were studied in many of our other papers and
result [of course, not for purely quantum effects, such asgeneralized in review6], Chaps. | and II. In our works,
recoil or electron spin moment contribution, see E2)].  based on Maxwell-Dirac equations fornumber functions,
Nevertheless, it should be emphasized that the classical dgre always assumed that our devigebeam—dielectric me-
SCI’iptiOﬂ of an electromagnetic field holds true only if its dium) contains a probing Signdkjassicaj monochromatic

electric field strengtlE is high enough2], wave.
) In the present paper we consider the case where the same
E|> w- Jic @) device contains no probing waver starts up from a photon
c? ' vacuum. Therefore, the radiation field is built up from spon-

taneous noise. For simplicity we suppose that ¢Hleeam

or if the photon number per unit volume is large enough,only has an energy spread of Gaussian form. If¢zeam
N/V>1. density is small then one can neglect the stimulated pro-

In the present paper we consider radiation produced by avesses contribution. In such a case the radiation line form
electron beam(e-beam). If the electron density is high also has Gaussian form. But when thdeam density ex-
enough, then such a device might be used as a cm-mm waveeeds some critical value, then the drastic changes of line
length source of electromagnetic radiation. On the basis oform take place. Namely, on its right-hand side the process
our result one may estimate the role of spontaneous noise wf stimulated emission forms a high narrow peak—an effect
a Cherenkov amplifier and develop the theory of a Cherenef Cherenkov superradiation. The next remarkable phenom-
kov oscillator. It should also be noted, ttesbeam radiation enon is possible on the left-hand side of radiation line. Here
can be used for its own structure investigation. To simplify(within the frequency finite regigrthe radiation and the ab-
the problem one can differentiate two cases. sorption processes may compensate each other. We have as-

(1) e-bunch sizd is of order or less than radiation wave- sociated this photon equilibrium state with the well-known
lengthA(I<\). In such a case all bunch particles radiate asblack radiation and called it Cherenkov black radiation. It
one particle. As a result, the radiated field quantities are dishould be emphasized that the latter effect is possible only if
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one takes spontaneous emission into account. when the photons are polarized aloxngxis. These photons
The organization of the remainder of this paper is as folinteract with electrons whose momentum vector is placed in

lows. In Sec. I, we write the Hamiltonian of our system. In the xz coordinate plane and is parallel to the axis. Since

Sec. lll, we calculate the energy and the intensity of radiationthe volumeV is arbitrary large, then, due to the periodic

produced by thee-beam using the Schdinger picture. In  boundary conditions, the electron momentum components

Sec IV, we obtain the same quantities more exactly on thare

basis of the Heisenberg picture. In Sec. V, the peculiarities of

radiation line shape are studied. In Sec. VI, the question of 27h |

radiation fluctuation level is discussed. And, finally, in Sec. Py =Ppy=0, pz':pj:T I

VII, we consider the possibility of experimental observation

of superradiation effects. where

Il. THE SYSTEM HAMILTONIAN j=0,12... . (6)

Consider now the interaction of the electron field with the
electromagnetic field in the dielectric medium. To simplify
the problem we assume, as usii| that the coupling are in
a large cube o¥/=L23 volume and impose periodic boundary
conditions. Then the components of the electromagnetic field . dl¢)

ih ——=(H +th+Hint)|¢>v (7)
wave vector are at e

According to general principles, our system evolution is de-
scribed by the Schringer equation

2 2 2 where
k=T Ner Ky= =—n,, 0

— + + _ T
wheren,, ,=0, =1, =2... . Forsimplicity we suppose that HE_Z E.(a a +b by, th—z hoicici  (8)

dielectric medium permeabilitye=1, whereas permitivity

e(w) is a slowly varying function ofw frequency. Taking  gre the Hamiltonians of the free electrons and positrons and
into account that the electromagnetic field total energy is free photons, whereas

1
W= — f (eE?+H?)dV,
8w

1.
Hin=~ f j AV )
we may carry out the well-known second quantization pro-, — - .
cedure[2]. Then the field vector potential operator is is the Hamiltonian of their interaction and

2mhe . . j#=ecNyy ) (10)
[Ckae(a)elk-r+Clae(a)eflk-r].
@) is the operator of current density. For simplicity, we suppose
further that photon expectation ONk<2mc?/%w. In such a
Heree is the average value of the dielectric constapj,and ~ CaSe One may omit positron operators in E§sand(8) and
cl, are photon annihilation and creation operators in statéormal product operatd¥ in Eqg. (10).
with thek wave vector, ané® is a unit polarization vector.
Consider the second quantization of the electron field. We Ill. SCHRO DINGER PICTURE
neglect the influence of electron multiple scattering by the . . . . .
molecular of medium and assume that the radiated fielg !N this section we consider photon expectation ON in the

; ; ; Schralinger picture. The latter supposes that one may obtain
strength is not too high. Then theoperator expression | . o
g g P P el the system wave function and, as a result, the probability

A=Y

T a=1 Vwe

12 amplitudespy(t) (as well as probabilitie8Vy(t) =| ¢y|?) for
= N [apgupge“’ﬁ)p'r finding N photons in the system. Then the photon expecta-
p o=-12 \2VE tion ON at a given time is
+bl U e (1P, (5) I
N= NWy(t). 11
Herea,, and b,Tm are the electron annihilation and the posi- Nzo n(t A

tron creation operators in state with momentum ando
helicity, four-component spinons,, andu_,_, are normal-  Nevertheless, the computation of the exact system wave
ized so thatu. , uip(,:thc2 (hereu=u'? is an ad- function seems to be a complicated enough problem. The
joint bispinor, m is the electron mass, ang’ is the Dirac  simplest(but rough way to avoid this difficulty is connected
matrix). with the balance equation. We shall derive it in Sec. lll A. In
Furthermore, we shall study only the photon expectatiorSec. Ill B we shall calculate the-beam spontaneous emis-
occupation numbefON) in Ith state, namely, whek,=k,  sion. The modification of this radiation due to the stimulated
=0, k=k,=k=27l/L, ow=w,=ck/n, and a=1, i.e., processes will be considered in Sec. Ill C.
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A. Balance equation The first type deals with=1 andf=2 indices, whereas the

First of all, we assume that the system already contiing S€cond one deals with=3 andf=4 indices. The contribu-
photons and|N) is their wave function. We denote by tions of all other terms vanish because of conservation laws

- - 12).
[11,0,),]04,1,) and by|13,04),]03,1,) the initial and the final ( _ , .
wave functions of the electrons which take part in radiation NOW We introduce the expectation probabilities of photon
and absorption processes radiation and absorption per unit time

pi—hki=pf, p4+hke=ph. (12 W1 17

Here p* and k* are the electron moment@ontrvariant ) ] . ] ]
fourth vector and photon fourth wave vectar=0,1,2,3,4. It  HereT is the time of interaction. Note, that one might sub-
is clear, that the simplest wave function, which will conjunc- Stitute theVT/(2a)* expression for one of thé) functions

ture both these reactions, contains two electrons, at leastnd perform exact division. Now, according to the meaning
Therefore, we write of the wy value, we write a balance equation for photon

number changeN during the timedt,

| #0)=IN,11,0,,15,0). 13 AN=wy. 1dt—wy_ydt

Note, that in such a description the electron ®ht 1-t and

3-d statesN{® andN{?, are maximal and equal to 1 accord-

ing to Fermi’'s principle(below we shall take into account dN

thate-beam expectation ON-N®=N$ , and that their val- at - Wn+1T Wn-t (18)

ues are less than ujitt is interesting to note that this is not

the case at the classical level. Here the number of electrorfsurther(Sec. 6 we shall also need an equation for the sec-

in any state may be arbitrary large and the possibility ofgq moment of theN value N2. One can derive it in the

unsuccessful results appears. . ___ following formal way. As it follows from Eq.(17) and Eq.
Now we confine ourselves to linear field approximations. 1) the probabilitiesWy . 1 (t) and Wy(t) at the timet are

We substitutd®,) for |®) to the right of Eq.(7) and inte- (approximately Wy q(t)=(t+T/2Wy.q, Wy(t)=1

grate over time within thg—T/2,T/2] interval. If T=c then — Wiy 1(t) — Wy 4 (1) 7[note that we 7denotedVVN+1(t

the system final wave function is =T/2) by Wy 1]. Then theN? expectation valud\? is

|¢)=enIN,11,05,15,05) + o+ 1N+ 1,0,15,15,04) — Nil ,
N“= n“W,(1).
+ oniIN=1,1,0,,05,1). (14 oy " el
Here Now we carry out time differentiation of both sides of this

equation and substitute’ andn for n? andn in the right-

_(2m)%ehi’c [ (N+1)mhi |2 hand side. Finally, we have
PNA1T Y 2E,E,Vowe 7
X u,eMu; 8 (py—ik—py), <t - (N— 1)W1+ N°W+ (N=1)%wyi 1. (19)
(27)%eh3c Nt ]2 The same calculations for the first power of tNevariable
PN-17 iV 2E3E,Vwe leads to EQ(18)

o Before examination of Eq918) and (19) consider the
X ueMug s (ps+hik—py), (15 transition procedure to the reatbeam. Note, first, that the
obtained probabilities
whereas thepy amplitude is obtained from the condition of o
probability conservation W= 1(Pi ,Pr)~ 8@ (pi Ffik—py) Tr[(uu);(uu)], 20
Wit Wit W1 =1 8 herei=1 andf=2 for theN+1 case, whereais=3 and
f=4 for theN—1 case; spinor indices are omitted for sim-
plicity. If the e-beam is monoenergetic but arbitrary polar-
ized, then one has to introduce a density matrix. According
to [2] we must substitute

(hereé®=e{y#=— ). During the calculations we have
taken into account that the interaction Hamiltonian te(@s
which lead to reactionél?2), are of two types only;

8(p;—tik—ppalaic’| do) 1 ) _
E(pc+mcz)(l—y5a) for uu (21)
and

in Eq. (20). Herep=p*vy,, a=a*y,, a* is fourth polar-
8 (p;+nk—ppalaic|do). ization vector. g g
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If we are not interested in the-beam final state, then we o Vdp;
are to sum over the electron all possible states. Since the > N; WNil(Pj)~z N®@(p;) WWNil(pj)
e-beam density matrix21) and the interaction takes place in )

largeV volume, then such a procedure is equivalent to sub- Vdp;
stitution —J N (p;) W= 1(P;) )3
. Vdps 27)
(psc+ mc2) Z—ﬁ)?’ (22 )
(2m Herei=1 for the N+1 case and=3 for the N=1 one.

L Taking into account Eqg22), (23), and(27) we can repre-
for (uu); in Eq. (20). The second step is to introduce the sent thew,. ; probabilities as
parameters of the initisd-beam, such as densipg, polar-

ization a*#, and energy spreafl. For simplicity, we restrict Wni1=(N+1D)Rf(Eq), wyn_1=NRsf(E3) (28
ourselves to the case of the unpolarizetheam. Thera*
=0 and we must substitute and rewrite the balance equation in a clearer form:

1 . dN

5 (pict mc?) (23) gt = NIR1f(E1) ~Rsf(Eg) [+ Ryf(Ey). (29

for (uu); in Eq. (20). Assume that there aié(® electrons in  Note that (as usual the wy, , expression contains both
V volume and thaN{® is electron expectation ON in tréh stimulated (term ~N) and spontaneougierm ~1) emis-
state, so thaN{?<1, SN(¥=N, and po=N®/V is the o> Whereas#}“’}—l Sxpression comtans 3”'Ydthe samu
e-beam density. According to general principles, the totaIate process. The first term In the right-hand side of the Eq.

probabilities of photon radiation or absorption per unit time(z.g) describes the. competition of stimulated emission and.
are stimulated absorption processes, whereas the second one is

responsible for spontaneous emission. The multiplicative
factorsR, ; are defined as

W(h})ﬂ:Ei N{® Wy 1 (p;)- (24

2wc)\poez,Bi3E1,35in20) P13)|°
mc

L3 hwe

As was mentioned earlier interaction volunve is large.

Therefore, the allowed values of electron momenini6) _Tw(1—np,; £osv) (30
[as well as energy valueg;=(p?c?®+m?c*)¥?] are very * 2E, 487 S0
close to one another. In other words, ##eam momentum
and energy spectra, in fact, are continuous functions opthe The values
and E variables[note, that the same is also true for the
e-beam final statg22)]. We assume, for definitness, that E;s=E.*AE (31
both distribution functionsN®(E) and N®(p) have Gauss-
ian form; namely, are those electrons energies which take part in radiation and
absorption processes and
N(®/(E)=poVH(E),
. mc?
N‘®(p) = poV8(px:) 8(py)N(p;0), (25 * [1~(n coz) "]
where and
41 —E,)2 _1 2 ( Pc|?
[4In21 (E—Eyp) AE=zfw(n“—1)| — (32
f(E)Z TK ex;{—4|n2T}, 2 mc

are the classical and the quantum parts of these energies
obtained from Eqs(12).

dE

N (p,)=N(E) doy’ (26)
Z!

B. e-beam spontaneous radiation

Here E, is the average energy of tebeam andA is the In this limit we neglect the first term in the right-hand side
width of the energy spread. Recall, that in the present papejt Eq. (29). Suppose that our system starts up from photon

we are not interested in the-beam angular spreaome  yacuum at the time=t,, i.e., N(t)=0. Then at the time
spin and angular spread effects were discussed in our revieghoton expectation ON is

[6], Secs. 12, 10, and 14Now the well-known transition
procedure from summation to integration can be carried out: N=(t—tg)Rf(Ey).
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Now one may introduce radiated field spectral enedyy dN
=fwN Vdk/(27)% and intensitydl=dW/dt. Taking into dr _GN+Q. (35
account thatlk=(n/c)3w?dwd0 (d0=sin 9dade is a solid

anglg and Eq.(30) we have It should be noted that replacing theariable by a new one,

7=ct/n, makes it possible in our problem to pass from the

n 2 : .
dl=N® 5e ezwﬁisinngl<r‘;_1c) f(Ey) time picture to the space one. The value
_ . n’-1
ol 7nBicod)| o b G= 327 (In2)%%por o\ 3siP0 —
2E,B7sirt6
o[ Po\’(Eo|?Ec=By [ (Ec—Eo)’
dW=(t—tg)dl. (33 mel | A A X n2——z7—

HereB,=v,/c, p;=Ev,/c? andE, energy is defined by (36)

Egs.(31) and(32). . . )
It seems useful to derive the above expressions as a direl§ cOmPpletely equal to the Cherenkzov laser gain obtained by

generalization of the Tamm-Frank formula. In the case oS earlier([6], Sec. 10 (herery=e Imc is the classical

one particle the radiation spectral intensity idl  €lectron radius The value

=hwow,Vdk/ (27)3. Here thew, value is defined byvy, ; 1

expression(28) at N=0. Note that thg1;) state does not R s 2 Po

play any role in the production aé freqﬁeni:y(lZ). If we are Q=4ym In2pqr o) Bpsirt6 n (ﬁ:) A ho

not interested in the electron final state and the electron ini- )

tial state is not polarized, then the substati¢2® and (23) Xex;{ iy |n2(Ec_ Eo)

should be carried out. Finally, we have A?

(37)

n ., - hw(l—np cos) describes the source of spontaneous radiation. Note that the
di=5— e"w"Bsime 1- 2EB%SI0 G(E,) function achieves its maximur@ ,,,=G; and mini-
mum G,;,=—G, values at
ho(n?—1)
X8| w—kv cos9+ ————|dow,
2E A
E.=E{ ,=EjF— (38
[ 1,2 0 \/m
dW=(t—tg)dlI. (34

nergies. Thés, , values are defined as

Po %[ Eo\|?
nel (5] 9

Note, that the multiplicative factor in square brackets does?
not appear during calculations based on the Klein-Gordon
equation. Hence it is due to the electron spin moment. When Gio= 8,4p0r0)\1,2685in20
we neglect the latter effect and the recoil term in the argu- N2
ment of thed function as well, then Eq€$34) coincide with

the same ones derived by Tamm and Frank. The averaginghere w, , frequencies(and \; ,=2mc/w; , wavelengthy
over thee-beam energy spread®f(E) leads to Eq(33). are determined from the

Thus thee-beam spontaneous radiation is directly propor-

tional to interaction volum& and electron density,. Note 1-n(w)B; £09=0

also that now, in contrast to the one particle cé34, the

radiation intensity and energy are smoothly varying func'equations,ﬁi ,—cplJE},. Omitting the GN term in Eq.

2
nlyz_ 1

tions of w frequency. (35) we return to the previous case. If we neglect@é&erm,
then Eq.(35) coincides with that for the Cherenkov lagét.
C. Dense electron beam radiation Note, that the latter has a nontrivial solution only if the de-

Now we can consider the modification of spontaneous/IC€ contains a probing wave from the outset.
radiation intensity and energy due to the stimulated pro- Thus, in contrast to the consideration based on Maxwell-

cesses. First of all, we simplify the right-hand side of Eq.Dirac equations foc-number function6], the one based on
(29). We neglect the electron spin moment contribution andQED allows us to take into account spontaneous emission. If
take into account thaR, 5 are slowly varying functions of OUr System starts up from photon vacuum at the time,
energy, so that ’ then at the time

27CA po€2 BAE SirP o ( Po ) 2

1,3 mc N:g[quGT)_l] (40)

howe

Since the quantum correctiohE (32) is small AE<E), Therefore, the energy and the intensity of radiation produced
thenf(E,) —f(E3)=2(df/9E;)AE. Finally, we have by thee-beam are, respectively,
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dW=# Q G 1 Vniwldwdo dL i ~ -
=ho & [exdG7) ]W. gt = 7 [HL]
wC Vnilw?dwdo the Hamiltonian definitior{8) and(9) and commutative rules
di=——QexpGn) 2mc)® (41 for Schralenger operators
Note, that theQ/G fraction is an universal value determined cc'-cle=1, aal+afa=4;,
only by conservation law&l2) and distribution functior§26) )
we obtain
Q  f(Ep 1 A A [mc\? 1 "
G f(E;)—f(Es)  8IN2E,—Eghw |\ pg, N2—1° CC iwe- alal,
(42) dt oo
When theG 7 parameter is smallG7<<1) then the radiation def
. i At Ata gt
has a mainly spontaneous nature. gr lect > 4 ajlij (46)
If Gr>1, then thee-beam emission may increase sharply h
due to the exponential teriigsee Sec. Y It is interesting to da i
note that the radiation energy and intensiyt) are directly T Erér_Z (ascl ;rf+éf6T|r_rf)!
proportional to coupling volumé&/ (as in the spontaneous dt h
radiation casg but exponentially depend astbeam density gl i
po- Such dependence is in contrast both to the spontaneous aa 1 . Atart L oatat;—
radiation casé€33) and the coherent radiation cafs3-5]. If dt  # Era, +2f (@sCly+arCie). (47)
our device operates in the amplifier regime, then the solution
of Eq. (35 is Here the coupling constanﬁﬁ are defined as
Q i(2m)%efi%c mh o\
N=Ngexp(Gr)+ = [exp(GT)—1]. *_ ey Soi+Hk—Dn:
0 G i v 2EE,Vos uie'ujo(p; =ik —p;).
. o 48
Here N, is the number of amplified wave photons at the “8)
=0 time. Itis clear, that the first term describes an exponennote that at the time,
tial growth of the initial signal, whereas the second one de-
scribes the spontaneous noise of amplifier. It is obvious, that &(tg)=c, ¢&'(t)=c', a(tg)=a,, al(ty)=a,
the (49
Q andN(ty) =0. As it follows from the set46) it is convenient
No> 3 43 {0 introduce new operatorsc, a,a’ so that

inequality is the necessary condition of amplifier operation c=cexp—iot), c'=clexpiot),

[the Q/G fraction is determined by Eq42)]. R R
a,=aexp —iEt/h), al=a'expliEt/h). (50
IV. HEISENBERG PICTURE
Then the basic system of equations, which describes our de-
It seems, that the most suitable tool for studying stimu-vice is

lated processes is the Heisenberg pictitB), since the sys-
tem of equations for field operators is completely similar to d_C_ _ Fo - e
that for c-number functions. In this section we denote lby dt ; gl exp —IAE; UA),
andL the Heisenberg and the ScHinger operators, respec-

tively. Note that in the HP the photon expectation ON is dc'
= => alajlTexp —iAE;t/h),
0

N=( ol & o Ckal B0) (44)
d
where d—Tz — > [acl-exp(—iAE t/h) +acll
T
|¢0>: |O‘y11]_102!13104> (45)
. ) Xexp(—iAE;t/A)], (51

is our device wave function at the time-tg, cla andcy,
are electromagnetic field operators in the HP. Now we derive da;r

the system of equations for the photorand ¢' operators
and for the electro@, and é;‘ ones(here we omitted photon
operator indices; the index stands fompo indices in the X exp(—iAE; t/h)], (52)
electron operatojsUsing the equation of motion for Heisen-

berg operatot where the energy detuning

W:Z [alcl{exp —iAEft/A) +alc'l
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AE=E{FThw—FE;. (53 and the vanishing valugy switches off the electron-photon
coupling at the timey=—c. Now one may introduce Eq.
Note that there now appears the possibility to assume that i(68) into Eq. (51) and obtain the system of equations for
some cases new field operators may be slowly varying funcphoton operators:
tions of time with respect to the exponents. We shall study

the solutions of the obtained system in two cases: spontane- E:Cg, FocT+f
ous radiation and densebeam radiation. dt 2t 7t b
A. Spontaneous radiation dc’ r At
: rTa g,C' +woc+ 1y, (60)

In this limit we neglect photon operators “influence” on d

electron operators in Eq§52) by setting the right-hand side

. . X ‘ Here theg; ,, v ,, andf, , operators are expressed in terms
of this equation equal to zero. Accounting E49) gives 12, V12 120P P

of Shradinger operators

a=a,, a=a/. (54) E .
¥

To simplify the calculations we suppose that the titge = = a Al i SxXF AR t/h)llf i afajl”

—o. Then we substitutes and a’ operators fora and a'

operators in the right-hand side of E§1) and perform time

integration within the[ —o,+0o0] interval. Finally, we ex-

press new photon operators in terms of photon and electron vy o= 2 [+ a al; T exp(—iAE; t/ﬁ)lﬁR f+afajl

Schralinger operators:

X exp( —iAEt/A)I5RE)],

ij

Xexp(—iAE THUR)IGREG],
c=c—i§j‘, a'ajl R, c*ch+; alasl ;R . (55)

. f12—+2 alajlexp(—iAE; t/h) (61)
Here the multiplicative factorg;; are

RE=2m7hS(E:+hw—E). (here 1 and 2 indices correspond to upper and low signs,
i =2mho(E =ho—E) (56) respectively. The simple analysis shows that the terms di-

Now we may introduce Eq55) into Eq.(44) and pass to the rectly proportional to thev; , operators are connected with
real e-beam using Eqs22), (23), and (27). Finally, as one double photon processes. Here we are not interested in this
might easily predict, we come to Eq&3). effect and omit both these terms. Then the system of Egs.

(60) splits in two uncorrelated equations for teeand c’

operators. It should also be noted that only nonoscillating

constant in timgterms play a leading role in operatays.
The above calculations have shown that electron opera- Taking both these remarks into account one obtains

tors approximation by Schdinger operators in Eq(51)

leads only to the account of spontaneous emission. Now we

B. Densee-beam radiation

solve Egs.(52) more exactly. To simplify the problem, we gt ot i, (62)
approximate thea,a’ operators using tha,a’ ones in the

right-hand side of Eq(52) and suppose that the and c' dcf

operators are slowly varying functions of tirfieote, that in ot =g,¢"+f5. (63

Cherenkov laser theorfRef.[6], Sec. 10 a similar assump-
tion corresponds to the small gain approximation Wh'ChHereglzoperators are defined as
holds true when the-beam density is not too highThen

one obtains _
gFZ (D; aJTaj_DiJraiTai),
ar:ar+A1, a::a:+A2, (57) &
where theA, , operators are, respectively, U=, (FfaTaj ~F'ala). (64)
A= —Z ag(cl (Rt + 'l Ry), Dj" andF;" functions are determined by equations
D =(F])*=>, i
A=, af(cl{ R +clI; Ry). (58 i =(F)7= i
The multiplicative factors N
(P
t - D =(F/ )" =3 +—— (65
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Note, that Eqs(62) and (63) are similar to shortened wave
equations, in whichf, , are source operators, wheregs,
are gain operators. Sincg= aiTai is theith level population

S. G. OGANESYAN

56

Here theG value is defined by Eq36). Then we can per-
form the procedures of Eqg22), (23), and (27) on the
F<1°>Fg°> product. Finally, we obtain exact expression for

operator they, , operators have inverse population meaning.photon expectation ON:

To solve Eqs(62) and(63) we pass from the field opera-
tors toc-number functions. Therefore, we multiply E@2)
by the |®,) wave function to the right and E@63) by the
(®| wave function to the left and introduce the notations

c|®o)=C,

01| Po)=Gi|Pg), f1|Pg)=Fy,

(DolcT=C*, (Do|go=(Po|G;, (Po|f,=F, (66)
(note thaf®,) is an eigenfunction of the;=a/ a; operatoy.

Thus we obtain two simple equations

dc ! § I ~%
E:Glc_‘_Fl' T=GZC +F2, (67)
the solutions of which are
1
= "MV — ’
C=CpexpG;t) Gl IAE, A exp(Git)
i
—exp(—%AEz‘lt }
2
* — % 4 4
C*=CgexpGst) GLTIAEA exp(G,t)
i +
—ex —%AElzt . (68)
Here C, and Cj; are the integration constants,
F%=F,t=0), and theF, (t) functions are defined by

Egs.(61) and(66). If our device starts from photon vacuum
at the timet=0 thenCy=Cj =0 and photon expectation
ON [Egs.(44) and(66)] is

0p0
ol i FiF5 i (eGit_e—(i/h)AE;lt)
Gj+ z AEZl) ( Gy— P AEu)
X(eeét_e(i/ﬁ)AE;lt)_ (69

Now we pass to the reatbeam using the rules of EqR2),

— .omd
N=2772p0r0,335|n20% f dEf(E)

lexp(gt) —exdi(w—k-v)t]|?
x 9°+ (w—k-v)?

(71

which differs from Eq.(41). Note that one may perform ap-
proximative integration with respect to tHe variable. It
might be relatively easy carried out in the limited cases of
large gain

G>2k — me 2 72
> E, | Py (72)
and small gain
G<2k ) 73
= Eo | P/ (73

When integrating Eq952) we supposed already that the
¢, ¢’ operatordor C, C* values(66)] were slowly varying
functions of time(such an assumption is equivalent to the
small gain approximation so we must use inequality’3).
The computations show that in this case Ef{) passes into
formula (40). It should be noted, that inequaliy3) restricts
e-beam density:

A [mc\?
po<pn=2K g Py

Here the p, density is obtained from thes;=2k(A/
Eo)(Md/py)? equation and thes; value is determined by
expression39). It should also be noted that the upper limit
of the e-beam density is determined by Fermi’s principle. In
the general case when tleebeam has both traverge, and
longitudinal A, momentum spreads one has

dG,

T (74)

AiAII

POSPF™~ 7373 (795

V. SPECTRAL INTENSITY AND ENERGY PROFILES

Now we consider the profiles of spectral intensity and

(23), and(27). First, we carry out the integration with respect €nergy produced by low deng@3) and dense41) e-beams.

to the E variable in theG;=D; —D3 and G,=F; —F;
functions. Using the well-known integration rule.

1 —Pl_' 5
XTig ;+|7-r(x)

First of all, we have to fix the observation angland define
the medium refractive inder(w). As is well-known,n(w)
is a smooth function ofw frequency far from the special
points. Suppose that electrons whose velocitgjgproduce
the photons ofw, frequency, so that

we remove the singularities in these expressions. Keeping

only the real part of th&] , functions, one obtains

lc
ReGizRenggziﬁG. (70

Since thee-beam energy spread is small, in the range close
to the wy point one may write to a good accuracy

N(w)=ng+An=ng+(w—wg)n}, (76)
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wheren| is then(w) function derivative at the, point and
An<ng. As follows from Eqgs.(31) and (32), the velocity
and the energy of the electron which produces éhére-
guency photon, are, approximately,~v., E;~E., where

UVc=Ug

1-( )n"’}
—(w—wqy) —|,
0 nO

2 A1
&) Mo
mc/ ng

E.=E, 1—(w—w0)( . (77

After introducing these values into E(B3) and taking into
account thaE.~E, andv.~vg, one obtains

Jr In2 No [ Po\?
— (t— (a2, R2 gj — | =
dW=(t—ty) —— N®e?wp; Sirfe c (mc)
Eo (w—wo)z
XK exp{—4 IHZT dwdo,
dl=dW/(t—tp). (78)
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3 E 2
r‘;—‘;) (XO) . (84)

n2—1

GO: 8,4p0r07\0,8(3)sin20 On
0

As was indicated in Sec. lll, replacing time by the 7
=ct/n variable allowed us to pass from the time picture to
the space picture. Consider this question in more detail. Sup-
pose that the-beam has a finite traverse dimension equal to
a. Then the length on which treebeam and photon coupling
takes place ig’ =a/sinf. As a result, the interaction tinte
=an/c sind and, consequently, theparameter is equal to

ct a
Tqa=—= — =
'n  sing

z, (85

i.e., it has interaction length meaning. Taking into account all
these remarks, one may rewrite E¢$1) as

dW=£ Q G.R 1 Vniw?dwdo

= wa[exp( oR7y) ]W’
dl_hwc G.R Vniwidwdo 86
—TQGXP( 0 Tl)w (86)

Thus, thee-beam spontaneous radiated line has Gaussian

form with

ng A
Aw—o

(mc)2 79
B ng Eo |\ Po

width. Note, that the latter value is directly proportional to

Let us consider these equations as functions-beam den-
sity pg. We introduce the definition of the-beam charac-
teristic densityp., on the basis of the equation

GOTl: 1. (87)

the e-beam energy spread width and decreases rapidly Using Eq.(84), one finds

when thee-beam average enerdy, increases.

Now we pass to the dengebeam radiated line consider-

ation. It is convenient to represent the gain expres&éhin
two equivalent forms:

G:GJ_,ZD]_,ZR- (80)
Here the G,, values are determined by formula89)
whereas

A n?-1 ng,

—— 1
1.2 )\1'2 n niz_l (8 )

and the multiplicative factoR is

_ 2
exp{ -4 Inz%} . (82

Since thee-beam energy spread is not large/E,<1, and
the An value (76) is small,An<ny, D;~=D,~1 and, as a
result, the gain shape is determined by Ehéunction.

It should be noted that) R=0 at thew= wq point, (i) R
achieves its maximur®,,,=1 and minimumR,;;,=—1 val-
ues at the

w1=wgtAw/\8IN2, w,=wy—Aw/\8In2

points. (i) In @> wy+Aw andw<wy— Aw portions of the
spectrumR function are exponentially small.

Since Aw<<wg then, approximatelyw,~w,~wq, N\
~Ns~M\g, andG;~G,~G,, where

w— W
w

R=/8e In2 A

(83

_sing (dG) ~*
pch_T d_po
2 3 27—-1
ng—1 E
- 8,4ar0>\o°n—33sin20(:1—"c> (f) } . (89)
0

We shall say thae-beam density, is low if

PO<Pch- (89)
On the contrary, the-beam is dense if
Pni=> Po> Peh (90)

where thep,,, density is defined in Eq.74). And, finally, if
po>pn then we deal with the high densitg-beam. Of
course,po<pr [EQ. (79]. In the first casg89 one may
expand the exponent in E¢B6) in Taylor series. Keeping
two first terms only, we find that the radiation produced by a
low density e-beam has, mainly, spontaneous nature de-
scribed by Eq(78). In the case of the dengebeam(90), the
Ggy7, parameter is more than a unit. It is clear, that the
Go|R|7; product is small,Gy|R|7;<1, in the |w— w
<Aw and |w— wo|>Aw regions due to the first and third
properties of theR function (82). As a result, these portions
of the spectrum also have a spontaneous nature described by
Eq. (78). The reasons of such phenomena are as follows. As
follows from balance equatiof85) and Eq.(28) in the range
close to thewq point the probability of photon stimulated
emission is equal to the probability of photon absorption and
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they com;;]ensate eatlzh other. Therefore, this portion of the 1 mc\2 1 ne \3 ,
spectrum has a mainly spontaneous nature. dw= (—) (—) ® ex;{G T
In the w>wy+Aw and w<wy—Aw regions the radia- v81In2 po/ mg—1\2mc| o
tion is formed by electrons, whose energies Bge<cEy— A (- ©1)2
andE.>Ey+ A, respectively. For such energies tdeam -4 In2—12 dwdo, (92)
spectral density,f (E.) is exponentially small and the con- (Awy)
tribution of stimulated processes is negligible. Note that on . .
may determine the boundaries of the discussed regions mo Qe width of which,
exactly from theGy|R|7;=<10"! condition. Using theR
function definition(82), we find three inequalities Aw= Aw (93)
1 ’
\/ZGoTl
WSS w3, W=05, OSwg,
is appreciably less than the widtfw of spontaneous radia-
where tion (79). The physical meaning of the SR effect may be
understood on the basis of balance equat@® and Eqgs.
w3.4= wo* Aw/10G,7; \/8e In2, (31) and(32). It is due to the fact that in the vicinity of the

w4 point [or in the vicinity of E; energy(38)] stimulated
emission may dominate over spontaneous emission and
stimulated absorption.

A very interesting phenomenon occurs in the range close
the w, frequency(83). Here the factow — wy<<0 and one

ws 6= 0o+ Aw{[IN(10VeGyr,)]/4 IN2}2

The most interesting portions of the spectrum are close to thﬁ)
w, andw, points(83). In the vicinity of w; frequency theR mav rewrite the radiation spectral ene 86) in a more
function value isR(w)~R(w;)=1, so that the parameter con)(/en\?éét form: ' P YW (86) i
Gy|R| 71> 1. Therefore, the spectral energy and intensity can '
be written as Q Vo2nidedo
s 5 dW:ﬁw@[l_eXF(_GO|R|Tl)]W-
dW h Q G R Vnowodwdo (94)

=ho = expGo Tl)(zw—c)s,

Since the producG,y7,;>1 and|R(w)|~1, then the second

Vndw2dwdo term in square brackets is a vanishing value and the satura-

h
di= %C Q exp(GyR7y) (91)  tion of radiated energy takes place:

(2mc)®
_ _ _ Ao VA mc\2 1 n )3 Aw dond
It is clear th_at the spectral shape of these funf:tlons dnffers =382 p_o n?—1\27¢c) wo—w wao.
from Gaussian form. Note also, that both functions achieve (95)

their maximums at

, 1 e
@171 2\ 212

s Note that radiation intensity vanishes simultaneousdy (
Aw =dW/dt—0). The physics of the saturation effect follows
Gomy from balance equatiolil8). Whene-beam radiated energy
reaches the level of Eq95) then the radiated photon number
frequency. Sinc&,m™>1 andAw<w,, w;~w;. Compari- dWy.1dtis exactly equal to the number of absorbed photons
son of formulas(91) and (78) shows that the radiation dWn-:dtand the possibility of the equilibrium of the photon
formed by stimulated processes fpexpGom)l/VeGyr,  State appears. Note that a similar effect takes place when the
times exceed the spontaneous radiation. We called this ph&lectromagnetic field interacts with molecular medium and
nomenon the Vavilov-Cherenkov superradiation effectSO-called black radiation is built up. We called the radiation
(VChSRB. One can determine the frequency boundaries oflescribed by Eq(95) Vavilov-Cherenkov black radiation
the superradiation effect from the e@f;)=10 condition. (VChBR). The frequency boundaries of this effect may be

Taking into account definitio82), one obtains determined from the exp(Gy|R|m)<10"! condition. Using
definition (82) one obtains

WIS W= wg,
(,092 w= w10,

where where

w7=wo+ (Aw In10)/G;74(8e In2)*2, we=wo—(Aw IN10)/G,7(8e In2)X2

(In Enciloﬁ)/ In2 |n<JIEnCi20””/4|n2]M.

Note that in the direct vicinity of thes; point the spectral It should be noted that the VChBR ener(@5) is JeGyr;
energy peak9l) has Gaussian form times less than that for spontaneous radiatit®).

1/2

wg=wotAw

W10= Wg— Aw[
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VI. PHOTON NUMBER FLUCTUATIONS VII. CONCLUSION

One may evaluate photon number fluctuati¢éas well as A theory of densee-beam radiation was developed. We
the fluctuations of spectral energy and intensiythe range  supposed that the-beam(which has a Gaussian form energy
of VChSRE (92) on the basis of Eqs(18) and (19). The  spreadl is uniform in space and our device starts from a

relative size of the fluctuations is by definition photon vacuum. In such a case the radiation field is built up
- from spontaneous noise, therefore we based our investigation

AN (N2-N?)12 on the QED approach. It is shown that the major parameter

T: N (98)  \yhich determines the radiation spectral energy and intensity

is e-beam densityp,. If it is less than some characteristic

Note that the first momeril was already computed by us density pen, then the radiation has a mainly spontaneous
and it is determined by Eq40), whereGr>1 and the sign Nature. One can also obtain the spectral intensity and energy

of averaging is omitted for S|mp||c|ty Let us Compute the of such radiation directly from the Tamm-Frank formula. In
second momenNZ. One may rewrite Eq(19), using this the discussed case they have Gaussian profiles whose width

value, as Aw is directly proportional to thee-beam energy spread

width A. If the e-beam density is highpo> pcn, then a dras-

) tic deformation of the spontaneous line profile takes place
g, 26N +40QN; +Q. (97 due to the stimulated processes of photon emission and ab-

sorption. We have shown that on the right-hand side of the

Here we introduced new variabik = \/ﬁ and theG andQ radiation spectral profil@in the vicinity of theful frequency

values are defined by Eq&36) and (37). A simple integra- (83)] a_sharp anq narrow peak occurs. Its mtlen.sny exceeds

tion allows us to pass from differential equation to algebraic@PPreciably the intensity of spontaneous radiation, whereas

2
1

one for theN; value its width Aw; is much less thanAeo—the Vavilov-
Cherenkov superradiation effect. A remarkable phenomenon
) 1)1t occurs on the left-hand side of the spontaneous radiation line
(2G N1+4QN1+Q)(GN1+2Q)( 2N+ 5 in the vicinity of thew, point (83). When radiation energy
achieves the value defined by Ef5), then the radiation and
=4Q” exp(2Gr). (98)  absorption processes completely compensate each other and

_ _ radiation energy saturation takes platee intensity of such
It should be noted that at the tinte=0, Ny(t=0)=0, i..,  ragiation vanishes We call such a photon state Vavilov-
our device starts from photon vacuum. The solutions of Edcperenkov black radiation, since it is similar to the well-

(98) may be ea§|ly found in .the two limited cases W—hereknown black radiation. Assume that arbeam with average
photon expectation number is smal<1, and large,N energy E,=12.6 Mev and relative energy spreal/E
>1. In the first case one observes the linear growth of the_;4-3 passes gaseous medium with refractive index
NE=N2 value with the respect to the interaction length —1.0016 atA=1um wavelength. We suppose that the
N=G e-beam traverse dimensi@~=5 cm and that we observe ra-
hedd diation at the angl@d=3.97x10 2 rad. In such a case the

et ; - -3
whereas the exponential enhancement of the same Valdaéectron characterlstlc_ densit§8) pg,=5x10° cm
If the e-beam is dense[Eq. (90)], po=210p.

takes place in the second case: "3 -4 )
=5x10° cm™ 3, then the superradiation intensity and energy

_ Q\? (92) exceed by three orders the same ones of spontaneous
N2:4(6) expi2Gr). (99)  radiation(78) whereas the widtiAw; (93) is 4.5 less then
Aw [Eq. (79)].
Note that the first case corresponds#&1/G, interaction It should be noted that a sligttangle tuning leads to a
length; in its turn the second case is valid# 1/G,. Using  Slight tuning of thew, frequency. Comparison of black ra-
Eq. (40) one obtains diation energy(94) with the same energy of spontaneous
radiation(78) (for the parameters chosen abpghows that
- \/§Q the latter is 16.5 times more. The obtained results allowed us
AN=(N*— NZ)UZ:? exp(Gr). (100  to write the condition of Cherenkov amplifier operati@8)

and to evaluate photon number fluctuati¢h81). Note also,

The introduction of Eqs(40) and (100) into Eq. (96) shows that the cases of high de_nsity electron and phot_on beams
that the relative size of radiation fluctuations is more thar(When nonlinear effects with respect pg and N variables
unit are possiblewere outside of the present consideration.

AN
W—Z\g. (101)

ACKNOWLEDGMENTS

Thus, the fluctuations level in the superradiation eff@et The final stage of this work was supported by Interna-
the framework of the developed approachhigh enough.  tional Science and Technology Center Grant No. A-87.



4694 S. G. OGANESYAN 56
[1] I. E. Tamm and I. M. Frank, Dokl. Akad. Nauk SS9R, 107 [4] U. Happek, A. J. Sievers, and E. B. Blum, Phys. Rev. L&.
(1937. 2962 (199)).
[2] V. B. Berestetskii, E. M. Lifshitz, and L. P. PitaevskiRela- [5] Young Uk Jeong, Yoshiyuki Kawamura, Koichi Toyoda,
tivistic Quantum TheoryNauka, Moscow, 1968 Chang Hee Nam, and Sang Soo Lee, Phys. Rev. 6&tt1140
[3] Juzo Ohkuma, Shuichi Okuda, and Kunihiko Tsumori, Phys. (1192.

6] V. M. Harutunian and S. G. Oganesyan, Phys. R&f) 217
Rev. Lett.66, 1967(1991). (6] (1996 g 4 4



