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Dense electron beam radiation in a dielectric medium

S. G. Oganesyan
R&D Company ‘‘Lazerayin Tekhnika,’’ Yerevan 375 090, Armenia
~Received 3 July 1996; revised manuscript received 27 May 1997!

We have studied both the spectral intensity and the energy of radiation produced by an electron beam in
dielectric medium. Since the device starts up from a photon vacuum the investigation is based on a quantum
electrodynamics approach. We have assumed that the electron beam longitudinal size is indefinite and its
energy spread is of Gaussian form. In such a case the radiation process has a cutoff with respect to the electron
density r0 . If the electron density is lower than some characteristic densityrch then the radiation will be
mainly spontaneous and its emission line will have Gaussian shape. If the electron beam is dense,r0.rch,
then a drastic change of line form takes place. Namely, one observes a high and narrow peak~or superradiation
effect! on its right-hand side and radiation energy saturation on its left-hand side. Both of these phenomena are
due to the stimulated processes of photon absorption and emission. We have evaluated the level of radiation
fluctuations in the peak vicinity. Numerical estimations of both obtained effects are presented.
@S1063-651X~97!07709-X#

PACS number~s!: 41.60.Bq
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I. INTRODUCTION

The theory of the Vavilov-Cherenkov effect based
Maxwell equations was developed by Tamm and Frank@1#.
As a matter of fact, they calculated the radiation produced
an electron traversing a dielectric medium. They showed
spectral distribution of Cherenkov radiation hasd-type form
@i.e., spectral intensitydI;d(v2kvcosu) do dv#, so that the
frequencyv emitted at theu angle is defined by

12nb cosu50. ~1!

Heren(v) is the refractive index of the medium,b5v/c, v
is the electron velocity,c is the light velocity,u is the angle
between wave vectork and velocity v. The calculations
based on quantum electrodynamics~QED! lead to a similar
result @of course, not for purely quantum effects, such
recoil or electron spin moment contribution, see Eq.~34!#.
Nevertheless, it should be emphasized that the classica
scription of an electromagnetic field holds true only if
electric field strengthE is high enough@2#,

uEu@
v2

c2 A\c, ~2!

or if the photon number per unit volume is large enoug
N/V@1.

In the present paper we consider radiation produced b
electron beam~e-beam!. If the electron density is high
enough, then such a device might be used as a cm-mm w
length source of electromagnetic radiation. On the basis
our result one may estimate the role of spontaneous nois
a Cherenkov amplifier and develop the theory of a Cher
kov oscillator. It should also be noted, thate-beam radiation
can be used for its own structure investigation. To simp
the problem one can differentiate two cases.

~1! e-bunch sizel is of order or less than radiation wave
lengthl( l<l). In such a case all bunch particles radiate
one particle. As a result, the radiated field quantities are
561063-651X/97/56~4!/4683~12!/$10.00
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rectly proportional to the number of electrons,N(e), whereas
the intensity of the radiation is directly proportional
(N(e))2. This effect in the cases of Cherenkov radiation@3#,
transition radiation@4#, and undulator radiation@5# was re-
cently observed in mm wavelengths region. Note, that it i
very complicated problem to generate a very short elect
bunch.

~2! In the present paper we consider the opposite cal
@l ~or where thee-beam longitudinal size is indefinite!.
The major feature of such a device is that a photon, produ
by an electron, moves ine-beam for a long time. As a resul
the possibilities of stimulated emission as well as absorp
appear. We show that both these phenomena lead to dr
changes of spontaneous radiation line form. It will be no
here that the pure stimulated effects~in fact, stimulated Cher-
enkov effects! were studied in many of our other papers a
generalized in review@6#, Chaps. I and II. In our works
based on Maxwell-Dirac equations forc-number functions,
we always assumed that our device~e-beam–dielectric me-
dium! contains a probing signal~classical monochromatic
wave!.

In the present paper we consider the case where the s
device contains no probing wave~or starts up from a photon
vacuum!. Therefore, the radiation field is built up from spo
taneous noise. For simplicity we suppose that thee-beam
only has an energy spread of Gaussian form. If thee-beam
density is small then one can neglect the stimulated p
cesses contribution. In such a case the radiation line fo
also has Gaussian form. But when thee-beam density ex-
ceeds some critical value, then the drastic changes of
form take place. Namely, on its right-hand side the proc
of stimulated emission forms a high narrow peak—an eff
of Cherenkov superradiation. The next remarkable phen
enon is possible on the left-hand side of radiation line. H
~within the frequency finite region! the radiation and the ab
sorption processes may compensate each other. We hav
sociated this photon equilibrium state with the well-know
black radiation and called it Cherenkov black radiation.
should be emphasized that the latter effect is possible on
4683 © 1997 The American Physical Society
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4684 56S. G. OGANESYAN
one takes spontaneous emission into account.
The organization of the remainder of this paper is as

lows. In Sec. II, we write the Hamiltonian of our system.
Sec. III, we calculate the energy and the intensity of radiat
produced by thee-beam using the Schro¨dinger picture. In
Sec IV, we obtain the same quantities more exactly on
basis of the Heisenberg picture. In Sec. V, the peculiaritie
radiation line shape are studied. In Sec. VI, the question
radiation fluctuation level is discussed. And, finally, in Se
VII, we consider the possibility of experimental observati
of superradiation effects.

II. THE SYSTEM HAMILTONIAN

Consider now the interaction of the electron field with t
electromagnetic field in the dielectric medium. To simpli
the problem we assume, as usual@2#, that the coupling are in
a large cube ofV5L3 volume and impose periodic bounda
conditions. Then the components of the electromagnetic fi
wave vector are

kx5
2p

L
nx , ky5

2p

L
ny , kz5

2p

L
nz , ~3!

wherenx,y,z50, 61, 62... . Forsimplicity we suppose tha
dielectric medium permeabilitym51, whereas permitivity
«~v! is a slowly varying function ofv frequency. Taking
into account that the electromagnetic field total energy is

W5
1

8p E ~«E21H2!dV,

we may carry out the well-known second quantization p
cedure@2#. Then the field vector potential operator is

A5(
k

(
a51

2 A2p\c2

Vv«
@ckae~a!eik•r1cka

† e~a!e2 ik•r#.

~4!

Here« is the average value of the dielectric constant,cka and
cka

† are photon annihilation and creation operators in s
with thek wave vector, ande(a) is a unit polarization vector

Consider the second quantization of the electron field.
neglect the influence of electron multiple scattering by
molecular of medium and assume that the radiated fi
strength is not too high. Then thec operator expression is@2#

c5(
p

(
s521/2

1/2
1

A2VE
@apsupse~ i /\!p•r

1bps
† u2p2se2~ i /\!p•r#. ~5!

Hereaps andbps
† are the electron annihilation and the po

tron creation operators in state withp momentum ands
helicity, four-component spinorsups andu2p2s are normal-
ized so thatū6ps u6ps562mc2 ~here ū5u†g0 is an ad-
joint bispinor, m is the electron mass, andg0 is the Dirac
matrix!.

Furthermore, we shall study only the photon expectat
occupation number~ON! in l th state, namely, whenkx5ky
50, k5kz5kl52p l /L, v5v l5ckl /n, and a51, i.e.,
l-
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when the photons are polarized alongx axis. These photons
interact with electrons whose momentum vector is placed
the xz coordinate plane and is parallel to thez8 axis. Since
the volumeV is arbitrary large, then, due to the period
boundary conditions, the electron momentum compone
are

px85py50, pz85pj5
2p\

L
j ,

where

j 50,1,2... . ~6!

According to general principles, our system evolution is d
scribed by the Schro¨dinger equation

i\
]uf&
]t

5~H
e
1Hph1H int!uf&, ~7!

where

He5(
r

Er~ar
1ar1br

1br !, Hph5(
i

\v ici
†ci ~8!

are the Hamiltonians of the free electrons and positrons
free photons, whereas

H int5
1

c E j mAmdV ~9!

is the Hamiltonian of their interaction and

j m5ecN̂~ c̄gmc! ~10!

is the operator of current density. For simplicity, we suppo
further that photon expectation ONN!2mc2/\v. In such a
case one may omit positron operators in Eqs.~5! and~8! and
normal product operatorN̂ in Eq. ~10!.

III. SCHRÖ DINGER PICTURE

In this section we consider photon expectation ON in
Schrödinger picture. The latter supposes that one may ob
the system wave function and, as a result, the probab
amplitudeswN(t) ~as well as probabilitiesWN(t)5uwNu2! for
finding N photons in the system. Then the photon expec
tion ON at a given timet is

N̄5 (
N50

`

NWN~ t !. ~11!

Nevertheless, the computation of the exact system w
function seems to be a complicated enough problem.
simplest~but rough! way to avoid this difficulty is connected
with the balance equation. We shall derive it in Sec. III A.
Sec. III B we shall calculate thee-beam spontaneous emis
sion. The modification of this radiation due to the stimulat
processes will be considered in Sec. III C.



s
y

io

c-
a

d-
t

t
ro
o

s

f

e

ws

on

b-

ing
n

c-

is

-
r-
ing

56 4685DENSE ELECTRON BEAM RADIATION INA . . .
A. Balance equation

First of all, we assume that the system already containN
photons anduN& is their wave function. We denote b
u11,02&,u01,12& and byu13,04&,u03,14& the initial and the final
wave functions of the electrons which take part in radiat
and absorption processes

p1
m2\km5p2

m , p3
m1\km5p4

m . ~12!

Here pm and km are the electron momenta~contrvariant!
fourth vector and photon fourth wave vector,m50,1,2,3,4. It
is clear, that the simplest wave function, which will conjun
ture both these reactions, contains two electrons, at le
Therefore, we write

uf0&5uN,11,02,13,04&. ~13!

Note, that in such a description the electron ON-s in 1-t and
3-d statesN1

(e) andN3
(e) , are maximal and equal to 1 accor

ing to Fermi’s principle~below we shall take into accoun
thate-beam expectation ON-s N1

(e)ÞN3
(e) , and that their val-

ues are less than unit!. It is interesting to note that this is no
the case at the classical level. Here the number of elect
in any state may be arbitrary large and the possibility
unsuccessful results appears.

Now we confine ourselves to linear field approximation
We substituteuF0& for uF& to the right of Eq.~7! and inte-
grate over time within the@2T/2,T/2# interval. If T5` then
the system final wave function is

uf&5wNuN,11,02,13,04&1wN11uN11,01,12,13,04&

1wN21uN21,11,02,03,14&. ~14!

Here

wN115
~2p!4e\3c

iV F ~N11!p\

2E1E2Vv«G1/2

3ū2ê~1!u1d~4!~p12\k2p2!,

wN215
~2p!4e\3c

iV F Np\

2E3E4Vv«G1/2

3ū4ê~1!u3d~4!~p31\k2p4!, ~15!

whereas thewN amplitude is obtained from the condition o
probability conservation

WN1WN111WN2151 ~16!

~hereê(1)5em
(1)gm52g1!. During the calculations we hav

taken into account that the interaction Hamiltonian terms~9!,
which lead to reactions~12!, are of two types only;

d~4!~pi2\k2pf !af
†aic

†uf0&

and

d~4!~pi1\k2pf !af
†aicuf0&.
n

st.

ns
f

.

The first type deals withi 51 and f 52 indices, whereas the
second one deals withi 53 and f 54 indices. The contribu-
tions of all other terms vanish because of conservation la
~12!.

Now we introduce the expectation probabilities of phot
radiation and absorption per unit time

wN615
WN61

T
. ~17!

HereT is the time of interaction. Note, that one might su
stitute theVT/(2p)4 expression for one of thed (4) functions
and perform exact division. Now, according to the mean
of the wN value, we write a balance equation for photo
number changedN during the timedt,

dN5wN11dt2wN21dt

or

dN

dt
5wN112wN21 . ~18!

Further~Sec. 6! we shall also need an equation for the se
ond moment of theN value N2. One can derive it in the
following formal way. As it follows from Eq.~17! and Eq.
~16! the probabilitiesWN11(t) and WN(t) at the timet are
~approximately! WN61(t)5(t1T/2)wN61 , WN(t)51
2WN11(t)2WN21(t) @note that we denotedWN61(t
5T/2) by WN61#. Then theN2 expectation valueN2 is

N25 (
n5N21

N11

n2Wn~ t !.

Now we carry out time differentiation of both sides of th
equation and substituten2 and n̄ for n2 and n in the right-
hand side. Finally, we have

dN2

dt
5~N21!2wN̄211N2wN̄1~N21!2wN̄11 . ~19!

The same calculations for the first power of theN variable
leads to Eq.~18!.

Before examination of Eqs.~18! and ~19! consider the
transition procedure to the reale-beam. Note, first, that the
obtained probabilities

wN61~pi ,pf !;d~4!~pi7\k2pf !Tr@~uū! i~uū! f #,
~20!

where i 51 and f 52 for the N11 case, whereasi 53 and
f 54 for theN21 case; spinor indices are omitted for sim
plicity. If the e-beam is monoenergetic but arbitrary pola
ized, then one has to introduce a density matrix. Accord
to @2# we must substitute

1

2
~ p̂c1mc2!~12g5â! for uū ~21!

in Eq. ~20!. Here p̂5pmgm , â5amgm , am is fourth polar-
ization vector.
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4686 56S. G. OGANESYAN
If we are not interested in thee-beam final state, then w
are to sum over the electron all possible states. Since
e-beam density matrix~21! and the interaction takes place
largeV volume, then such a procedure is equivalent to s
stitution

~ p̂fc1mc2!
Vdpf

~2p\!3 ~22!

for (uū) f in Eq. ~20!. The second step is to introduce th
parameters of the initiale-beam, such as densityr0 , polar-
ization am, and energy spreadD. For simplicity, we restrict
ourselves to the case of the unpolarizede-beam. Thenam

50 and we must substitute

1

2
~ p̂ic1mc2! ~23!

for (uū) i in Eq. ~20!. Assume that there areN(e) electrons in
V volume and thatNj

(e) is electron expectation ON in thej th
state, so thatNj

(e)<1, (Nj
(e)5N(e), and r05N(e)/V is the

e-beam density. According to general principles, the to
probabilities of photon radiation or absorption per unit tim
are

wN61
~ t ! 5(

i
Ni

~e!wN61~pi !. ~24!

As was mentioned earlier interaction volumeV is large.
Therefore, the allowed values of electron momentumpi ~6!
@as well as energy valuesEi5(pi

2c21m2c4)1/2# are very
close to one another. In other words, thee-beam momentum
and energy spectra, in fact, are continuous functions of thp
and E variables @note, that the same is also true for th
e-beam final state~22!#. We assume, for definitness, th
both distribution functionsNe(E) and N(e)(p) have Gauss-
ian form; namely,

N~e!~E!5r0V f~E!,

N~e!~p!5r0Vd~px8!d~py!N~e!~pz8!, ~25!

where

f ~E!5A4 ln 2

p

1

D
expF24 ln2

~E2E0!2

D2 G ,
N~e!~pz8!5N~e!~E!

dE

dpz8
. ~26!

Here E0 is the average energy of thee-beam andD is the
width of the energy spread. Recall, that in the present pa
we are not interested in thee-beam angular spread~some
spin and angular spread effects were discussed in our re
@6#, Secs. 12, 10, and 14!. Now the well-known transition
procedure from summation to integration can be carried
he

-

l

er

ew

t:

(
j

Nj
~e!wN61~pj !'(

j
N~e!~pj !

Vdpj

~2p\!3 wN61~pj !

→E N~e!~pi !wN61~pi !
Vdpi

~2N̄\!3 .

~27!

Here i 51 for the N11 case andi 53 for the N51 one.
Taking into account Eqs.~22!, ~23!, and~27! we can repre-
sent thewN61 probabilities as

wN115~N11!R1f ~E1!, wN215NR3f ~E3! ~28!

and rewrite the balance equation in a clearer form:

dN

dt
5N@R1f ~E1!2R3f ~E3!#1R1f ~E1!. ~29!

Note that ~as usual! the wN11 expression contains bot
stimulated ~term ;N! and spontaneous~term ;1! emis-
sions, whereas thewN21 expression contains only the stimu
lated process. The first term in the right-hand side of the
~29! describes the competition of stimulated emission a
stimulated absorption processes, whereas the second o
responsible for spontaneous emission. The multiplicat
factorsR1,3 are defined as

R1,35
2pclr0e2b1,3

2 E1,3sin2u)

\v« S p1,3

mcD
2

3F17
\v~12nb1,3cosu!

2E1,3b1,3
2 sin2u G . ~30!

The values

E1,35Ec6DE ~31!

are those electrons energies which take part in radiation
absorption processes and

Ec5
mc2

@12~n cosu!22#1/2

and

DE5
1

2
\v~n221!S pc

mcD
2

~32!

are the classical and the quantum parts of these ene
obtained from Eqs.~12!.

B. e-beam spontaneous radiation

In this limit we neglect the first term in the right-hand sid
of Eq. ~29!. Suppose that our system starts up from pho
vacuum at the timet5t0 , i.e., N(t0)50. Then at the timet
photon expectation ON is

N5~ t2t0!R1f ~E1!.



ir
o

t

in

e
do
he
gu

gi

or

c

u
ro
q
n

,
he

by

t the

e-

ell-

n. If

ced

56 4687DENSE ELECTRON BEAM RADIATION INA . . .
Now one may introduce radiated field spectral energydW
5\vN Vdk/(2p)3 and intensitydI5dW/dt. Taking into
account thatdk5(n/c)3v2dvd0 ~d05sin qdudw is a solid
angle! and Eq.~30! we have

dI5N~e!
n

2pc
e2vb1

2sin2uE1S p1

mcD
2

f ~E1!

3F12
\v~12nb1cosu!

2E1b1
2sin2u GdOdv,

dW5~ t2t0!dI. ~33!

Hereb15v1 /c, p15E1v1 /c2, andE1 energy is defined by
Eqs.~31! and ~32!.

It seems useful to derive the above expressions as a d
generalization of the Tamm-Frank formula. In the case
one particle the radiation spectral intensity isdI
5\vw1Vdk/ (2p)3. Here thew1 value is defined bywN11
expression~28! at N50. Note that theu13& state does no
play any role in the production ofv frequency~12!. If we are
not interested in the electron final state and the electron
tial state is not polarized, then the substations~22! and ~23!
should be carried out. Finally, we have

dI5
n

2pc
e2v2b2sin2uF12

\v~12nb cosu!

2Eb2sin2u G
3dS v2kv cosu1

\v~n221!

2E Ddov,

dW5~ t2t0!dI. ~34!

Note, that the multiplicative factor in square brackets do
not appear during calculations based on the Klein-Gor
equation. Hence it is due to the electron spin moment. W
we neglect the latter effect and the recoil term in the ar
ment of thed function as well, then Eqs.~34! coincide with
the same ones derived by Tamm and Frank. The avera
over thee-beam energy spreadN(e) f (E) leads to Eq.~33!.
Thus thee-beam spontaneous radiation is directly prop
tional to interaction volumeV and electron densityr0 . Note
also that now, in contrast to the one particle case~34!, the
radiation intensity and energy are smoothly varying fun
tions of v frequency.

C. Dense electron beam radiation

Now we can consider the modification of spontaneo
radiation intensity and energy due to the stimulated p
cesses. First of all, we simplify the right-hand side of E
~29!. We neglect the electron spin moment contribution a
take into account thatR1,3 are slowly varying functions of
energy, so that

R1,3'
2pclr0e2b0

2E0sin2u

\v« S p0

mcD
2

.

Since the quantum correctionDE ~32! is small (DE!E),
then f (E1)2 f (E3)52(] f /]Ec)DE. Finally, we have
ect
f

i-

s
n
n
-

ng

-

-

s
-
.
d

dN

dt
5GN1Q. ~35!

It should be noted that replacing thet variable by a new one
t5ct/n, makes it possible in our problem to pass from t
time picture to the space one. The value

G5232Ap~ ln2!3/2r0r 0lb0
3sin2u

n221

n

3S p0

mcD
3S E0

D D 2 Ec2E0

D
expF24 ln2

~Ec2E0!2

D2 G
~36!

is completely equal to the Cherenkov laser gain obtained
us earlier~@6#, Sec. 10! ~here r 05e2/mc2 is the classical
electron radius!. The value

Q54Ap ln2r0r 0lb0
2sin2u

1

n S p0

mcD
2 E0

D

mc2

\v

3expF24 ln2
~Ec2E0!2

D2 G ~37!

describes the source of spontaneous radiation. Note tha
G(Ec) function achieves its maximumGmax5G1 and mini-
mum Gmin52G2 values at

Ec5E1,28 5E07
D

A8 ln2
~38!

energies. TheG1,2 values are defined as

G1,258,4r0r 0l1,2b0
3sin2u

n1,2
2 21

n1,2
S p0

mcD
3S E0

D D 2

, ~39!

where v1,2 frequencies~and l1,252pc/v1,2 wavelengths!
are determined from the

12n~v!b1,28 cosu50

equations,b1,28 5cp1,28 /E1,28 . Omitting the GN term in Eq.
~35! we return to the previous case. If we neglect theQ term,
then Eq.~35! coincides with that for the Cherenkov laser@6#.
Note, that the latter has a nontrivial solution only if the d
vice contains a probing wave from the outset.

Thus, in contrast to the consideration based on Maxw
Dirac equations forc-number functions@6#, the one based on
QED allows us to take into account spontaneous emissio
our system starts up from photon vacuum at the timet50,
then at the timet

N5
Q

G
@exp~Gt!21#. ~40!

Therefore, the energy and the intensity of radiation produ
by thee-beam are, respectively,
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4688 56S. G. OGANESYAN
dW5\v
Q

G
@exp~Gt!21#

Vn3v2dvdo

~2pc!3 ,

dI5
\vc

n
Q exp~Gt!

Vn3v2dvdo

~2pc!3 . ~41!

Note, that theQ/G fraction is an universal value determine
only by conservation laws~12! and distribution function~26!

Q

G
5

f ~E1!

f ~E1!2 f ~E3!
'2

1

8 ln2

D

Ec2E0

D

\v S mc

p0
D 2 1

n221
.

~42!

When theGt parameter is small (Gt!1) then the radiation
has a mainly spontaneous nature.

If Gt@1, then thee-beam emission may increase sharp
due to the exponential term~see Sec. V!. It is interesting to
note that the radiation energy and intensity~41! are directly
proportional to coupling volumeV ~as in the spontaneou
radiation case!, but exponentially depend one-beam density
r0 . Such dependence is in contrast both to the spontan
radiation case~33! and the coherent radiation case@3–5#. If
our device operates in the amplifier regime, then the solu
of Eq. ~35! is

N5N0exp~Gt!1
Q

G
@exp~Gt!21#.

Here N0 is the number of amplified wave photons at thet
50 time. It is clear, that the first term describes an expon
tial growth of the initial signal, whereas the second one
scribes the spontaneous noise of amplifier. It is obvious,
the

N0@
Q

G
~43!

inequality is the necessary condition of amplifier operat
@the Q/G fraction is determined by Eq.~42!#.

IV. HEISENBERG PICTURE

It seems, that the most suitable tool for studying stim
lated processes is the Heisenberg picture~HP!, since the sys-
tem of equations for field operators is completely similar
that for c-number functions. In this section we denote byL̂
andL the Heisenberg and the Schro¨dinger operators, respec
tively. Note that in the HP the photon expectation ON is

N5^f0uĉka
† ĉkauf0&, ~44!

where

uf0&5u0g,11,02,13,04& ~45!

is our device wave function at the timet5t0 , ĉka
† and ĉka

are electromagnetic field operators in the HP. Now we de
the system of equations for the photonĉ and ĉ† operators
and for the electronâr andâr

† ones~here we omitted photon
operator indices; ther index stands forps indices in the
electron operators!. Using the equation of motion for Heisen
berg operatorL̂
us

n

-
-
at

n

-

e

dL̂

dt
5

i

\
@ĤL̂#

the Hamiltonian definition~8! and~9! and commutative rules
for Schrödenger operators

cc†2c†c51, aiaj
†1aj

†ai5d i j ,

we obtain

dĉ

dt
52 iv ĉ2(

i , j
âi

†â j I i j
2 ,

dĉ†

dt
5 iv ĉ†1(

i , j
âi

1â j I i j
1 , ~46!

dâr

dt
52

i

\
Erâr2(

f
~ âf ĉI r f

† 1âf ĉ
†I rr f

2 !,

dâr
†

dt
5

i

\
Erâr

†1(
f

~ âf
†ĉI f r

† 1âf
†ĉ†I f r

2 !. ~47!

Here the coupling constantsJi j
6 are defined as

I i j
65

i ~2p!3e\2c

V S p\

2EiEjVv« D 1/2

ūi ê
~1!ujd~pj6\k2pi !.

~48!

Note that at the timet0

ĉ~ t0!5c, ĉ†~ t0!5c†, âr~ t0!5ar , âr
†~ t0!5ar

† ,
~49!

andN(t0)50. As it follows from the set~46! it is convenient
to introduce new operatorsc,c†, a,a† so that

ĉ5c exp~2 ivt !, ĉ†5c†exp~ ivt !,

âr5arexp~2 iEr t/\!, âr
†5ar

†exp~ iEr t/\!. ~50!

Then the basic system of equations, which describes our
vice is

dc

dt
52(

i , j
ai

†aj I i j
2exp~2 iDEi j

2t/\!,

dc†

dt
5(

i , j
ai

†aj I i j
1exp~2 iDEi j

1t/\!,

dar

dt
52(

f
@afcI r f

1exp~2 iDEr f
1t/\!1afc

†I r f
2

3exp~2 iDEr f
2t/\!#, ~51!

dar
†

dt
5(

f
@af

†cI f r
1exp~2 iDEf r

1t/\!1af
†c†I f r

2

3exp~2 iDEf r
2t/\!#, ~52!

where the energy detuning
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DEi f
75Ef7\v2Ei . ~53!

Note that there now appears the possibility to assume tha
some cases new field operators may be slowly varying fu
tions of time with respect to the exponents. We shall stu
the solutions of the obtained system in two cases: spont
ous radiation and densee-beam radiation.

A. Spontaneous radiation

In this limit we neglect photon operators ‘‘influence’’ o
electron operators in Eqs.~52! by setting the right-hand sid
of this equation equal to zero. Accounting Eq.~49! gives

ar5ar , ar
†5ar

† . ~54!

To simplify the calculations we suppose that the timet05
2`. Then we substitutea and a† operators fora and a†

operators in the right-hand side of Eq.~51! and perform time
integration within the@2`,1`# interval. Finally, we ex-
press new photon operators in terms of photon and elec
Schrödinger operators:

c5c2(
i , j

ai
†aj I i j

2Ri j
2 , c†5c†1(

r , f
ar

†afI r f
1Rr f

1 . ~55!

Here the multiplicative factorsRi j
6 are

Ri j
652p\d~Ej6\v2Ei !. ~56!

Now we may introduce Eq.~55! into Eq.~44! and pass to the
real e-beam using Eqs.~22!, ~23!, and ~27!. Finally, as one
might easily predict, we come to Eqs.~33!.

B. Densee-beam radiation

The above calculations have shown that electron op
tors approximation by Schro¨dinger operators in Eq.~51!
leads only to the account of spontaneous emission. Now
solve Eqs.~52! more exactly. To simplify the problem, w
approximate thea,a† operators using thea,a† ones in the
right-hand side of Eq.~52! and suppose that thec and c†

operators are slowly varying functions of time@note, that in
Cherenkov laser theory~Ref. @6#, Sec. 10! a similar assump-
tion corresponds to the small gain approximation wh
holds true when thee-beam density is not too high#. Then
one obtains

ar5ar1D1 , ar
†5ar

†1D2 , ~57!

where theD1,2 operators are, respectively,

D152(
f

af~cI r f
1Rr f

11c†I r f
2Rr f

2 !,

D25(
f

af
†~cI f r

1Rf r
11c†I f r

2Rf r
2 !. ~58!

The multiplicative factors

Ri j
65E

t0

t

dt expS 2
i

\
DEi j

6t1ht D ~59!
in
c-
y
e-

on

a-

e

and the vanishing valueh switches off the electron-photo
coupling at the timet052`. Now one may introduce Eq
~58! into Eq. ~51! and obtain the system of equations f
photon operators:

dc

dt
5cg181n1c†1 f 1 ,

dc†

dt
5g28c

†1n2c1 f 2 . ~60!

Here theg1,28 , n1,2, and f 1,2 operators are expressed in term
of Shrödinger operators

g1,28 5(
i , j , f

@6ai
†afI i j

7 exp~2 iDEi j
7t/\!I j f

6Rj f
67af

†aj I i j
7

3exp~2 iDEi j
7t/\!I f i

6Rf i
6!],

n1,25(
i , j , f

@6ai
†afI i j

7 exp~2 iDEi j
7t/\!I j f

7Rj f
77af

†aj I i j
7

3exp~2 iDEi j
7t/\!I f i

7Rf i
7#,

f 1,257(
i , j

ai
†aj I i j

7exp~2 iDEi j
7t/\! ~61!

~here 1 and 2 indices correspond to upper and low sig
respectively!. The simple analysis shows that the terms
rectly proportional to then1,2 operators are connected wit
double photon processes. Here we are not interested in
effect and omit both these terms. Then the system of E
~60! splits in two uncorrelated equations for thec and c†

operators. It should also be noted that only nonoscillating~or
constant in time! terms play a leading role in operatorsg1,2.

Taking both these remarks into account one obtains

dc

dt
5cg11 f 1 , ~62!

dc†

dt
5g2c†1 f 2 . ~63!

Hereg1,2 operators are defined as

g15(
i , j

~D j
2aj

†aj2Di
1ai

†ai !,

g25(
i , j

~F j
2aj

†aj2Fi
1ai

†ai !. ~64!

D j
6 andF j

6 functions are determined by equations

D j
25~F j

2!* 5(
l

I l j
2I j l

1

i

\
DEjl

22h

,

Di
15~Fi

1!* 5(
r

I ir
2I ri

1

i

\
DEri 2h

. ~65!
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Note, that Eqs.~62! and ~63! are similar to shortened wav
equations, in whichf 1,2 are source operators, whereasg1,2

are gain operators. Sinceni5ai
†ai is the i th level population

operator theg1,2 operators have inverse population meanin
To solve Eqs.~62! and~63! we pass from the field opera

tors toc-number functions. Therefore, we multiply Eq.~62!
by the uF0& wave function to the right and Eq.~63! by the
^F0u wave function to the left and introduce the notation

cuF0&5C, g1uF0&5G18uF0&, f 1uF0&5F1 ,

^F0uc†5C* , ^F0ug25^F0uG28 , ^F0u f 25F2 ~66!

~note thatuF0& is an eigenfunction of theni5ai
†ai operator!.

Thus we obtain two simple equations

dC

dt
5G18C1F1 ,

dC*

dt
5G28C* 1F2 , ~67!

the solutions of which are

C5C0exp~G18t !1
F1

0

G181 iDE21
2 /\ Fexp~G18t !

2expS 2
i

\
DE21

2 t D G ,
C* 5C0* exp~G28t !1

F2
0

G281 iDE12
1 /\ Fexp~G2t !

2expS 2
i

\
DE12

1 t D G . ~68!

Here C0 and C0* are the integration constant
F1,2

(0)5F1,2(t50!, and theF1,2(t) functions are defined by
Eqs.~61! and~66!. If our device starts from photon vacuum
at the timet50 then C05C0* 50 and photon expectatio
ON @Eqs.~44! and ~66!# is

N̄5
F1

0F2
0

S G181
i

\
DE21

2 D S G282
i

\
DE21

2 D ~eG18t2e2~ i /\!DE21
2 t!

3~eG28t2e~ i /\!DE21
2 t!. ~69!

Now we pass to the reale-beam using the rules of Eqs.~22!,
~23!, and~27!. First, we carry out the integration with respe
to the E variable in theG185D1

22D3
1 and G285F1

22F3
1

functions. Using the well-known integration rule.

1

x6 ih
5P

1

x
7 ipd~x!

we remove the singularities in these expressions. Keep
only the real part of theG1,28 functions, one obtains

Re G185Re G285g5
1

2

c

n
G. ~70!
.

g

Here theG value is defined by Eq.~36!. Then we can per-
form the procedures of Eqs.~22!, ~23!, and ~27! on the
F1

(0)F2
(0) product. Finally, we obtain exact expression f

photon expectation ON:

N̄52p2r0r 0b0
2sin2u

mc2

«\v E dE f~E!

3
uexp~gt!2exp@ i ~v2k•v!t#u2

g21~v2k•v!2 ~71!

which differs from Eq.~41!. Note that one may perform ap
proximative integration with respect to theE variable. It
might be relatively easy carried out in the limited cases
large gain

G@2k
D

E0
S mc

P0
D 2

~72!

and small gain

G!2k
D

E0
S mc

P0
D 2

. ~73!

When integrating Eqs.~52! we supposed already that th
c, c† operators@or C, C* values~66!# were slowly varying
functions of time~such an assumption is equivalent to t
small gain approximation!, so we must use inequality~73!.
The computations show that in this case Eq.~71! passes into
formula ~40!. It should be noted, that inequality~73! restricts
e-beam density:

r0,rnl52k
D

E S mc

P0
D 2Y dG1

dr0
. ~74!

Here the rnl density is obtained from theG152k(D/
E0)(mc/p0)2 equation and theG1 value is determined by
expression~39!. It should also be noted that the upper lim
of thee-beam density is determined by Fermi’s principle.
the general case when thee-beam has both traverseD' and
longitudinalD i momentum spreads one has

r0<rF'
D'

2 D i

4p3\3 . ~75!

V. SPECTRAL INTENSITY AND ENERGY PROFILES

Now we consider the profiles of spectral intensity a
energy produced by low dense~33! and dense~41! e-beams.
First of all, we have to fix the observation angleu and define
the medium refractive indexn(v). As is well-known,n(v)
is a smooth function ofv frequency far from the specia
points. Suppose that electrons whose velocity isb0 produce
the photons ofv0 frequency, so that

12n~v0!b0cosu50.

Since thee-beam energy spread is small, in the range clo
to thev0 point one may write to a good accuracy

n~v!5n01Dn5n01~v2v0!n08 , ~76!
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wheren08 is then(v) function derivative at thev0 point and
Dn!n0 . As follows from Eqs.~31! and ~32!, the velocity
and the energy of the electron which produces thev fre-
quency photon, are, approximately,v1'vc , E1'Ec , where

vc5v0F12~v2v0!
n08

n0
G ,

Ec5E0F12~v2v0!S p0

mcD
2 n08

n0
G . ~77!

After introducing these values into Eq.~33! and taking into
account thatEc'E0 andvc'v0 , one obtains

dW5~ t2t0!
Ap ln2

p2 N~e!e2vb0
2 sin2u

n0

c S p0

mcD
2

3
E0

D
expF24 ln2

~v2v0!2

Dv2 Gdvdo,

dI5dW/~ t2t0!. ~78!

Thus, thee-beam spontaneous radiated line has Gaus
form with

Dv5
n0

n08

D

E0
S mc

p0
D 2

~79!

width. Note, that the latter value is directly proportional
the e-beam energy spread widthD and decreases rapidl
when thee-beam average energyE0 increases.

Now we pass to the densee-beam radiated line conside
ation. It is convenient to represent the gain expression~36! in
two equivalent forms:

G5G1,2D1,2R. ~80!

Here the G1,2 values are determined by formulas~39!
whereas

D1,25
l

l1,2

n221

n

n1,2

n1,2
2 21

~81!

and the multiplicative factorR is

R5A8e ln2
v2v0

Dv
expF24 ln2

~v2v0!2

~Dv!2 G . ~82!

Since thee-beam energy spread is not large,D/E0!1, and
the Dn value ~76! is small,Dn!n0 , D1'D2'1 and, as a
result, the gain shape is determined by theR function.

It should be noted that~i! R50 at thev5v0 point, ~ii ! R
achieves its maximumRmax51 and minimumRmin521 val-
ues at the

v15v01Dv/A8 ln2, v25v02Dv/A8 ln2 ~83!

points.~iii ! In v@v01Dv andv!v02Dv portions of the
spectrumR function are exponentially small.

Since Dv!v0 then, approximately,v1'v2'v0 , l1
'l2'l0 , andG1'G2'G0 , where
n

G058,4r0r 0l0b0
3sin2u

n0
221

n0
S p0

mcD
3S E0

D D 2

. ~84!

As was indicated in Sec. III, replacing timet by the t
5ct/n variable allowed us to pass from the time picture
the space picture. Consider this question in more detail. S
pose that thee-beam has a finite traverse dimension equa
a. Then the length on which thee-beam and photon coupling
takes place isz85a/sinu. As a result, the interaction timet
5an/c sinu and, consequently, thet parameter is equal to

t15
ct

n
5

a

sinu
5z8, ~85!

i.e., it has interaction length meaning. Taking into account
these remarks, one may rewrite Eqs.~41! as

dW5\v
Q

G
@exp~G0Rt1!21#

Vn3v2dvdo

~2pc!3 ,

dI5
\vc

n
Q exp~G0Rt1!

Vn3v2dvdo

~2pc!3 . ~86!

Let us consider these equations as functions ofe-beam den-
sity r0 . We introduce the definition of thee-beam charac-
teristic densityrch on the basis of the equation

G0t151. ~87!

Using Eq.~84!, one finds

rch5
sinu

a S dG0

dp0
D 21

5F8,4ar0l0

n0
221

n0
b0

3sin2uS p0

mcD
3S E0

D D 2G21

. ~88!

We shall say thate-beam densityr0 is low if

r0,rch. ~89!

On the contrary, thee-beam is dense if

rnl.r0.rch, ~90!

where thernl density is defined in Eq.~74!. And, finally, if
r0.rnl then we deal with the high densitye-beam. Of
course,r0<rF @Eq. ~75!#. In the first case~89! one may
expand the exponent in Eq.~86! in Taylor series. Keeping
two first terms only, we find that the radiation produced by
low density e-beam has, mainly, spontaneous nature
scribed by Eq.~78!. In the case of the densee-beam~90!, the
G0t1 parameter is more than a unit. It is clear, that t
G0uRut1 product is small,G0uRut1!1, in the uv2v0u
!Dv and uv2v0u@Dv regions due to the first and thir
properties of theR function ~82!. As a result, these portion
of the spectrum also have a spontaneous nature describe
Eq. ~78!. The reasons of such phenomena are as follows.
follows from balance equation~35! and Eq.~28! in the range
close to thev0 point the probability of photon stimulate
emission is equal to the probability of photon absorption a
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4692 56S. G. OGANESYAN
they compensate each other. Therefore, this portion of
spectrum has a mainly spontaneous nature.

In the v@v01Dv and v!v02Dv regions the radia-
tion is formed by electrons, whose energies areEc!E02D
andEc@E01D, respectively. For such energies thee-beam
spectral densityr0f (Ec) is exponentially small and the con
tribution of stimulated processes is negligible. Note that o
may determine the boundaries of the discussed regions m
exactly from theG0uRut1<1021 condition. Using theR
function definition~82!, we find three inequalities

v4<v<v3 , v>v5 , v<v6 ,

where

v3,45v06Dv/10G0t1A8e ln2,

v5,65v06Dv$@ ln~10AeG0t1!#/4 ln2%1/2.

The most interesting portions of the spectrum are close to
v1 andv2 points~83!. In the vicinity of v1 frequency theR
function value isR(v)'R(v1)51, so that the paramete
G0uRut1@1. Therefore, the spectral energy and intensity c
be written as

dW5\v
Q

G
exp~G0Rt1!

Vn0
3v0

2dvdo

~2pc!3 ,

dI5
\vc

n
Q exp~G0Rt1!

Vn0
3v0

2dvdo

~2pc!3 . ~91!

It is clear that the spectral shape of these functions dif
from Gaussian form. Note also, that both functions achi
their maximums at

v185v12
1

4 S e

2 ln2D
1/2 Dv

G0t1

frequency. SinceG0t@1 andDv!v1 , v18'v1 . Compari-
son of formulas~91! and ~78! shows that the radiation
formed by stimulated processes for@exp(G0t1)#/AeG0t1
times exceed the spontaneous radiation. We called this
nomenon the Vavilov-Cherenkov superradiation eff
~VChSRE!. One can determine the frequency boundaries
the superradiation effect from the exp(G0t1)>10 condition.
Taking into account definition~82!, one obtains

v7<v<v8 ,

where

v75v01~Dv ln10!/G1t1~8e ln2!1/2,

v85v01DvF S ln
AeG1t1

ln10 D Y ln2G1/2

.

Note that in the direct vicinity of thev1 point the spectral
energy peak~91! has Gaussian form
e

e
re

e

n

rs
e

e-
t
f

dW5
1

A8 ln2
VDS mc

r0
D 2 1

n0
221 S n0

2pcD 3

v0
2expFG0t1

24 ln2
~v2v1!2

~Dv1!2 Gdvdo, ~92!

the width of which,

Dv15
Dv

A2G0t1

, ~93!

is appreciably less than the widthDv of spontaneous radia
tion ~79!. The physical meaning of the SR effect may
understood on the basis of balance equation~29! and Eqs.
~31! and ~32!. It is due to the fact that in the vicinity of the
v1 point @or in the vicinity of E18 energy~38!# stimulated
emission may dominate over spontaneous emission
stimulated absorption.

A very interesting phenomenon occurs in the range cl
to thev2 frequency~83!. Here the factorv2v0,0 and one
may rewrite the radiation spectral energydW ~86! in a more
convenient form:

dW5\v
Q

uGu @12exp~2G0uRut1!#
Vv2n3dvdo

~2pc!3 .

~94!

Since the productG0t1@1 anduR(v)u'1, then the second
term in square brackets is a vanishing value and the sat
tion of radiated energy takes place:

dW5
1

8 ln2
VDS mc

p0
D 2 1

n221 S n

2pcD 3 Dv

v02v
dvdo.

~95!

Note that radiation intensity vanishes simultaneously (dI
5dW/dt→0). The physics of the saturation effect follow
from balance equation~18!. When e-beam radiated energ
reaches the level of Eq.~95! then the radiated photon numbe
dwN11dt is exactly equal to the number of absorbed photo
dwN21dt and the possibility of the equilibrium of the photo
state appears. Note that a similar effect takes place when
electromagnetic field interacts with molecular medium a
so-called black radiation is built up. We called the radiati
described by Eq.~95! Vavilov-Cherenkov black radiation
~VChBR!. The frequency boundaries of this effect may
determined from the exp(2G0uRut1)<1021 condition. Using
definition ~82! one obtains

v9>v>v10,

where

v95v02~Dv ln10!/G2t1~8e ln2!1/2,

v105v02DvH F lnSAeG2t1

ln10 D G Y 4 ln2J 1/2

.

It should be noted that the VChBR energy~95! is AeG0t1
times less than that for spontaneous radiation~78!.
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VI. PHOTON NUMBER FLUCTUATIONS

One may evaluate photon number fluctuations~as well as
the fluctuations of spectral energy and intensity! in the range
of VChSRE ~92! on the basis of Eqs.~18! and ~19!. The
relative size of the fluctuations is by definition

DN

N̄
5

~N22N̄2!1/2

N̄
. ~96!

Note that the first momentN̄ was already computed by u
and it is determined by Eq.~40!, whereGt@1 and the sign
of averaging is omitted for simplicity. Let us compute th
second momentN2. One may rewrite Eq.~19!, using this
value, as

dN1
2

dt
52GN1

214QN11Q. ~97!

Here we introduced new variableN15AN2 and theG andQ
values are defined by Eqs.~36! and ~37!. A simple integra-
tion allows us to pass from differential equation to algebr
one for theN1 value

~2GN1
214QN11Q!~GN112Q!S 2N11

1

2D 21

54Q2 exp~2Gt!. ~98!

It should be noted that at the timet50, N1(t50)50, i.e.,
our device starts from photon vacuum. The solutions of
~98! may be easily found in the two limited cases whe
photon expectation number is small,N̄!1, and large,N̄
@1. In the first case one observes the linear growth of
N1

25N2 value with the respect to the interaction lengtht :

N25Gt,

whereas the exponential enhancement of the same v
takes place in the second case:

N254S Q

GD 2

exp~2Gt!. ~99!

Note that the first case corresponds tot!1/G0 interaction
length; in its turn the second case is valid ift@1/G0 . Using
Eq. ~40! one obtains

DN5~N22N̄2!1/25
A3Q

G
exp~Gt!. ~100!

The introduction of Eqs.~40! and~100! into Eq. ~96! shows
that the relative size of radiation fluctuations is more th
unit

DN

N̄
5). ~101!

Thus, the fluctuations level in the superradiation effect~in
the framework of the developed approach! is high enough.
c

.

e

lue

n

VII. CONCLUSION

A theory of densee-beam radiation was developed. W
supposed that thee-beam~which has a Gaussian form energ
spread! is uniform in space and our device starts from
photon vacuum. In such a case the radiation field is built
from spontaneous noise, therefore we based our investiga
on the QED approach. It is shown that the major parame
which determines the radiation spectral energy and inten
is e-beam densityr0 . If it is less than some characterist
density rch, then the radiation has a mainly spontaneo
nature. One can also obtain the spectral intensity and en
of such radiation directly from the Tamm-Frank formula.
the discussed case they have Gaussian profiles whose w
Dv is directly proportional to thee-beam energy sprea
width D. If the e-beam density is high,r0.rch, then a dras-
tic deformation of the spontaneous line profile takes pla
due to the stimulated processes of photon emission and
sorption. We have shown that on the right-hand side of
radiation spectral profile@in the vicinity of thev1 frequency
~83!# a sharp and narrow peak occurs. Its intensity exce
appreciably the intensity of spontaneous radiation, wher
its width Dv1 is much less thanDv—the Vavilov-
Cherenkov superradiation effect. A remarkable phenome
occurs on the left-hand side of the spontaneous radiation
in the vicinity of thev2 point ~83!. When radiation energy
achieves the value defined by Eq.~95!, then the radiation and
absorption processes completely compensate each othe
radiation energy saturation takes place~the intensity of such
radiation vanishes!. We call such a photon state Vavilov
Cherenkov black radiation, since it is similar to the we
known black radiation. Assume that ane-beam with average
energy E0512.6 Mev and relative energy spreadD/E
51023 passes gaseous medium with refractive indexn
51.0016 at l51 mm wavelength. We suppose that th
e-beam traverse dimensiona55 cm and that we observe ra
diation at the angleu53.9731022 rad. In such a case th
electron characteristic density~88! rch553108 cm23.

If the e-beam is dense @Eq. ~90!#, r0510rch

553109 cm23, then the superradiation intensity and ener
~92! exceed by three orders the same ones of spontan
radiation ~78! whereas the widthDv1 ~93! is 4.5 less then
Dv @Eq. ~79!#.

It should be noted that a slightu-angle tuning leads to a
slight tuning of thev0 frequency. Comparison of black ra
diation energy~94! with the same energy of spontaneo
radiation~78! ~for the parameters chosen above! shows that
the latter is 16.5 times more. The obtained results allowed
to write the condition of Cherenkov amplifier operation~43!
and to evaluate photon number fluctuations~101!. Note also,
that the cases of high density electron and photon be
~when nonlinear effects with respect tor0 and N variables
are possible! were outside of the present consideration.
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